IPv6 Project Status

Ivette Reategui

October 2002

Agenda

- Internet Protocol (IP) Background
- 1 IPv4 Overview
 - Addressing
 - Issues
- 1 IPv4 vs. IPv6
- 1 IPv6 Overview
 - IPv6 Features
 - IPv6 Addressing/Scoping
 - IPv4 vs. IPv6 Headers
 - Two Implementation Methods for IPv6
 - Who/What supports IPv6
- 1 Global and Local IPv6 Deployment Status
- 1 References
- 1 Acronyms
- 1 To Learn More
 - Web Sites
 - Articles/Papers
- Related RFCs

IP Timeline

- 1 1958 ARPA is formed by the US government.
- 1 1964 RAND corp. proposes distributed communications network. [11]
- 1 1968 ARPANET begins 4 nodes at UCLA, SRI, UCSB, and U of Utah.
- 1 1974 Vint Cerf and Bob Kahn establish TCP.
- 1 1981 Current version of IP (v4) is released (RFC 791)
- 1 1983 TCP/IP becomes core Internet protocol replacing NCP. [12]
- 1 1983 The University of Wisconsin created Domain Name System (DNS). [12]
- 1 1995 IETF specifies IPv6 (RFC 1883.)
- 1 1998 Most current IPv6 RFC (2460) is released.
- 1 2000 Internet2 implements tunneled IPv6 in its backbone (Abilene.)
- 1 2001 MAX tunneled IPv6 to Abilene
- 1 2002 Abilene NOC deploys native IPv6.
- 1 2002 MAX establishes native IPv6 connection to Abilene.
- 1 2002 LHC/NLM establishes native IPv6 connection to MAX.

IPv4 Overview

IPv4

- 1 Internet Protocol version 4 (IPv4) has been in use for 20 years. [5]
- 32-bit hierarchical schemeNetwork and host portion.
- In theory 2³² or approximately 4.3 billion addresses.
- In practice only ~250 million addresses are available. [9]
- 1 Classes A-C are assigned based on network size.

Class A:	Network	Host	Host	Host
Class B:	Network	Network	Host	Host
Class C:	Network	Network	Network	Host

Class D: Multicast Class E: Research

IPv4 – Addressing

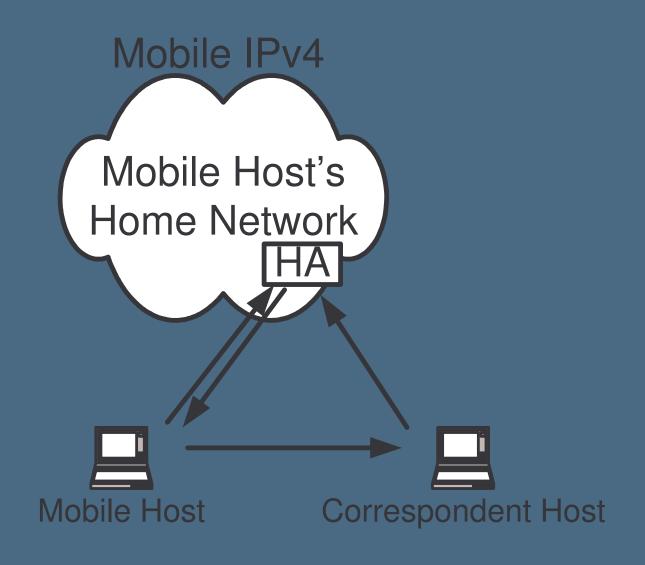
- 1 Hierarchical scheme.
 - Improves manageability of network.
 - Wasteful.
- 1 To conserve IP addresses:
 - <u>Classless Inter-domain Routing</u> (CIDR) (See Supplement A for details)
 - Single IP address can be used to designate many unique IP addresses.
 - Reduces the size of routing tables and make more IP addresses available within organizations." [1]
 - Network Address Translation (NAT) Allows use of a pool of IPs for external communication. [1]

Issues with IPv4

- 1 Depletion of IP addresses.
- 1 No integrated security at the IP level.
- 1 No auto-configuration.
- 1 Network Address Translation (NAT)
 - No IP transparency
 - Blocks peer-to-peer communications (e.g., IP phones).
 - Increases complexity of network, harder to manage.

Issues with IPv4 (Cont.)

1 Mobility


- "Triangle routing" More latency and bandwidth usage.
- Uses statically configured mobility security associations, instead of IPSec.

http://www.6ants.net/doc/draft/draft-ietf-mobileip-ipv6-18.txt

- Use of encapsulation for "all" mobile IP packet delivery (instead of routing header) more overhead.
 - Need "Foreign agents" (special routers).

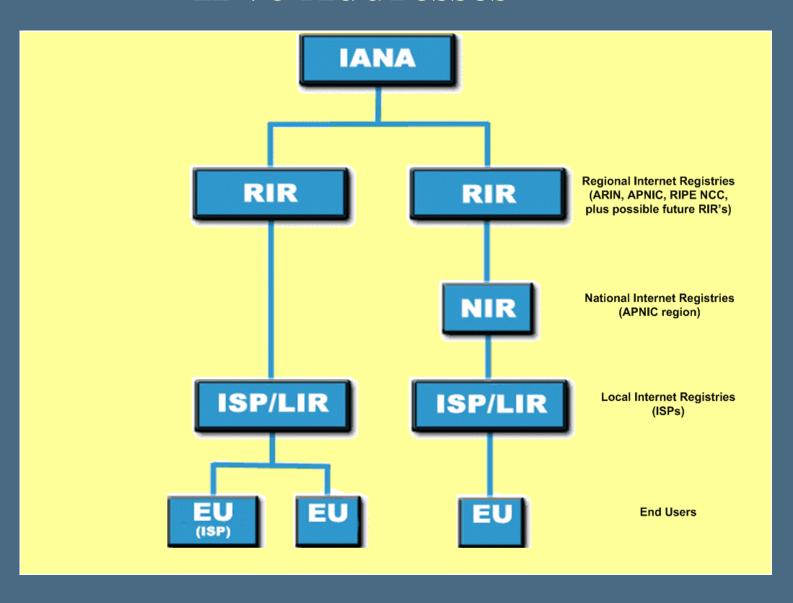
All these issues will be exacerbated by 2005

1.17 billion Internet users worldwide. 62% will be wireless users. [24]

IPv6 Overview

Request For Comments 2460

- 1 According to RFC 2460 changes fall into the following categories:
 - 1. Expanded Addressing Capabilities
 - 2. Header Format Simplification
 - 3. Improved Support for Extensions and Options
 - 4. Flow Labeling Capability
 - 5. Authentication and Privacy Capabilities


IPv6 Capabilities/Features

- Scalability: 128-bit hierarchical addresses.
- Faster routing: Simplified headers.
- Flow label requests for special handling by routers traffic, such as video streams router can know which end-to-end flow a packet belongs to, and then find out the packet which belongs to real-time traffic.
- 1 **IPsec** Built-in security at the IP layer. Integrated authentication, integrity, and confidentiality.
- 1 **Autoconfiguration** (RFC 2462)
 - Stateless autoconfiguration no manual conf. of hosts. Little, if any, conf of routers, no additional servers.
 - Stateful configuration -
- Peer-to-peer applications/transparency Online banking, medical records system sharing, Cafes with Internet Access.
- **Easy renumbering assignment of multiple addresses to same interface.**

Mobile IPv6

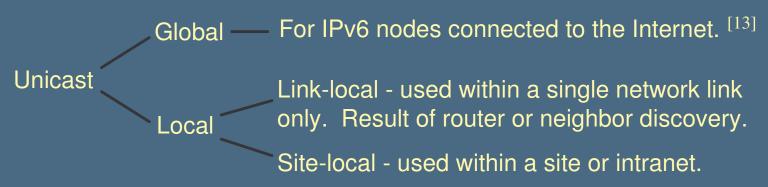
- Integrated route optimization Direct routing from any correspondent node to any mobile node, avoiding "triangle routing." [19]
 - Decreases latency and bandwidth needs.
- Special routers/"special agents" not needed. Mobile hosts use address autoconfiguration and neighbor discovery features to operate in a network away from home.
- 1 Uses IPSec.

Hierarchical Structure for Managing IPv6 Addresses [14]

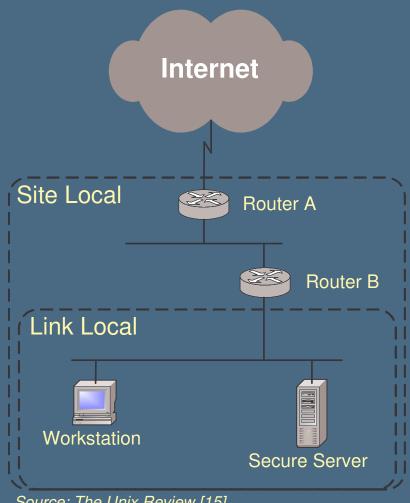
IPv6 Types of Addresses [6]

Unicast – For one-to-one communication.

1 Anycast – For one-to-nearest communication.


1 Multicast – For one-to-many communication.

No broadcast addresses. This function is superseded by multicast addresses.


Address Scope

Unicast and multicast addresses support scoping.

Multicast - support 16 different types of scope, incl. Link, node, site, org., etc.

A Scoped Network [15]

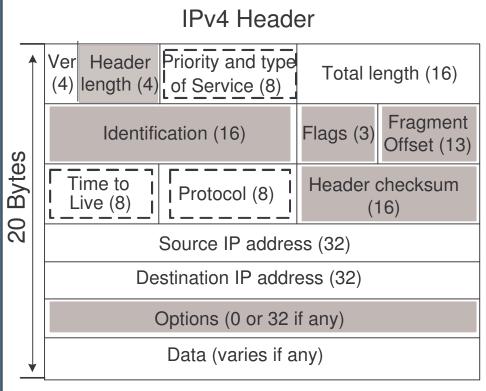
Source: The Unix Review [15]

Text Representation of Addresses

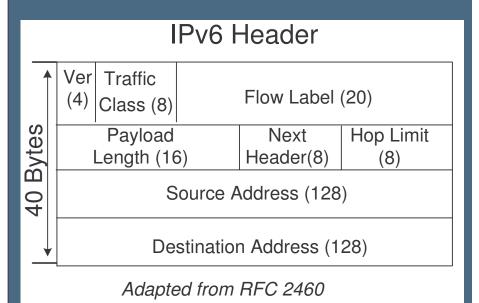
1 IPv6 addresses are written in hexadecimal.

Eight 16-bit sets in each address, for example:

2001:0468:0C06:0:0:0:0:0

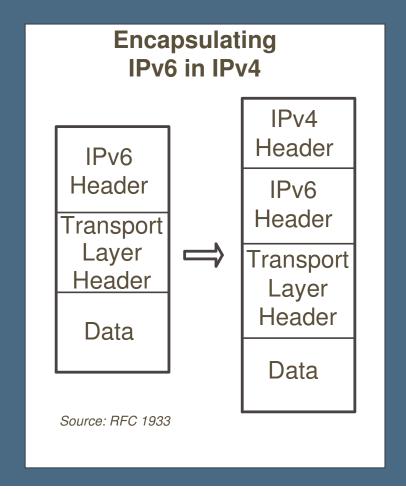

Leading zeroes on the left most position of each set can be removed 2001:468:C06:0:0:0:0:0

Addresses containing zeroes can be compressed.


Address above can be 2001:468:C06::

or 0:0:0:0:0:0:0:0 can be ::

Headers: IPv4 vs. IPv6


Adapted from Cisco Certified Network Associate [7] Study Guide, pg. 118

Two ways of implementing IPv6

Native connection – Between two IPv6 enabled networks.

Tunneling – Encapsulating IPv6 packets over an IPv4 infrastructure.

Software/Internet Applications Capable of Running over IPv6

Operating systems:

- Windows 2000, Windows XP, FreeBSD, NetBSD, OpenBSD, Sun Solaris 8, Mac OS X. [8], some Linux distributions (to check status go to: http://www.bieringer.de/linux/IPv6/status/IPv6+Linux-status-distributions.html).
- 1 Applications/Utilities:
 - Mail, DNS (BIND 9), Web server/browsers, FTP, Telnet, Ping6, tracert6, COLD (packet sniffer), IPFilter (firewall.) [20]

Vendors Supporting IPv6

Among others:

Alcatel – http://www.alcatel.com/

Cisco – http://www.cisco.com/warp/public/732/Tech/ipv6/

Extreme Networks – http://www.extremenetworks.com/

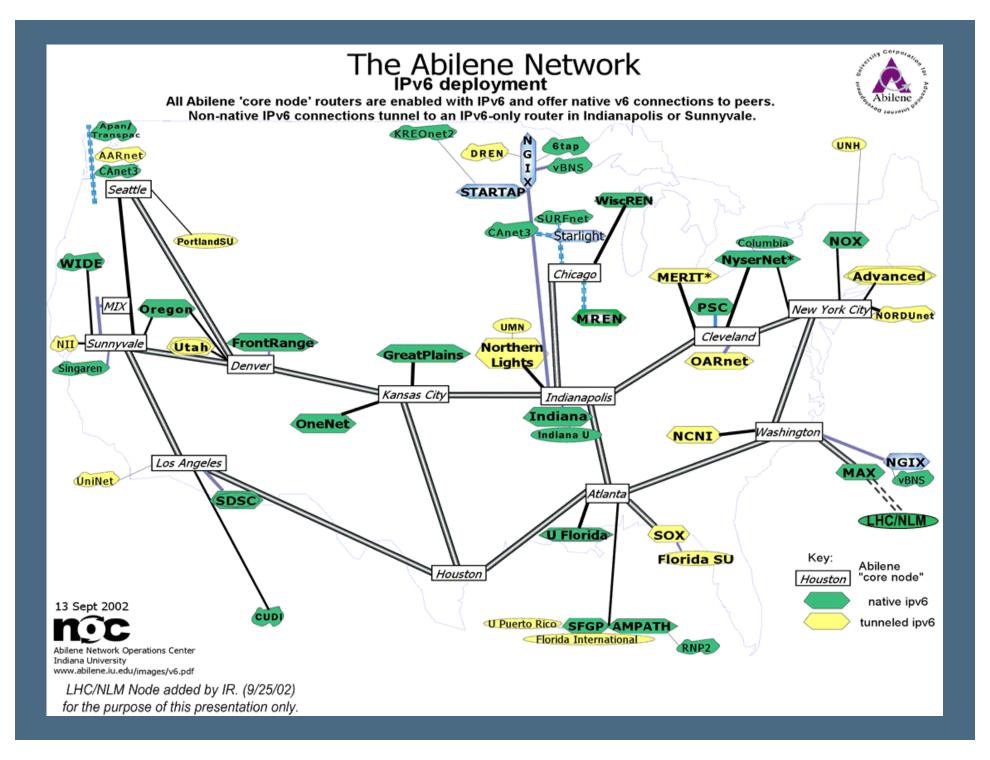
IBM – http://www.ibm.com/us/

Juniper – http://www.juniper.net/products/ipv6_overview.html

Microsoft -

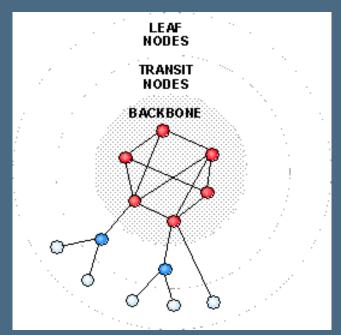
http://www.microsoft.com/windows.netserver/technologies/ipv6/default.mspx

Nokia - http://www.nokia.com/ipv6/index.html


Novell – http://www.novell.com/

Sun Microsystems – http://wwws.sun.com/software/solaris/ipv6/

Note to Developers


- Microsoft site on IPv6 Implementations (as of August 2002)
 http://www.microsoft.com/windows.netserver/technologies/ipv6/default.mspx#i
 mplementations
 - Windows .NET Server 2003 Family RC1 Production-quality version of IPv6
 - Windows XP provides developer-release version of IPv6. Recommended for creating sample configurations and porting your applications to run over IPv6. [13]
 - Windows CE .NET 4.1 inc. production-quality support for IPv6 and IPv4/IPv6 mechanisms.
- Adding IPv6 Capability to Windows Sockets Applications (while retaining IPv4 functionality.)
 - http://www.microsoft.com/windows2000/technologies/communications/ipv6/ipv6winsok.asp

The 6Bone

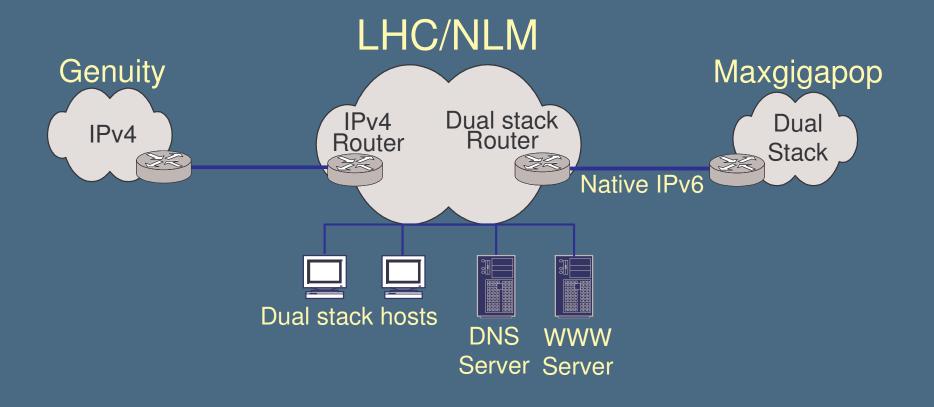
- 1 Global testbed network for IPv6.
- 1 Started in March 1996.
- 59 countries with a total of 1161 sites.
- 1 185 sites in the U.S., incl. vBNS, Cisco, Juniper.
- 1 Three level hierarchical network.

Source: inet Japan [21]

ISPs

- NTT Communications
 - In 2001, Japanese ISP was the first one to offer commercial IPv6 services.
 - Boasting the world's first commercial quality Asia-US-Europe IPv6 backbone. [17]
- Stealth Communications based in New York http://www.stealth.net/ipv6.html

LHC- IPv6 Implementation Status


Completed items

- Address space allocated by Maxgigapop 2001:0468:0C06::/48

To Do List

- Setup a DNS server capable of handling IPv6 addresses
- Decide on IPv6 addresses allocation plan
- Setup native IPv6 on our Juniper router
- Get native IPv6 connectivity from Maxgigapop
- Setup dual stack hosts Linux or Windows 2000 box with IPv4 and IPv6

LHC Proposed IPv6 Network Design

NLM Research Program/NGI

- "NGI research program to develop innovative medical projects that demonstrate the application and use of NGI capabilities:
 - Quality of Service
 - Medical data privacy and security
 - Nomadic computing
 - Network management
 - Infrastructure technology for scientific collaboration " ^[22]

IPv6 Benefits to NLM's NGI Program

What features of ipv6 pertain to NGI program expectations?

QoS - flow label-better support for <u>QoS</u>, real-time applications (e.g. telemedicine, distance learning.)

Security – big one! For <u>medical data privacy and security</u>.

End to end transparency – for <u>nomadic computing</u>, and medical data privacy and security .

Auto-configuration/neighbor discovery – easier/less costly to manage.

Simplified headers – faster/more efficient processing of packets, (router works less.)

Internet2/Abilene backbone – Offering native IPv6 services to their members:

200 universities, 60 corporate partners, 11 government agencies, 17 international partners (as of 10/14/02.) [23]

The playground is there for "scientific collaboration."

References (1)

- 1. Webopedia. (7/22/02). http://webopedia.com
- 2. Jayachandra, K. *IPSec and privacy with IPV6*. (7/16/02) http://216.239.37.100/search?q=cache:GrqqCORTg7QC:www.ipv6.net.cn/event/presentation/1%2520HP-Jay.pdf+ipv4+and+ipsec&hl=en&ie=UTF-8
- 3. IPv6 Header Format. (7/25/02) http://www.ngnet.it/e/ipv6proto/ipv6-proto-1.html
- 4. Messmer, Ellen. President's Advisor Predicts Cyber-Catastrophes Unless Security Improves. (7/10/02)
 http://www.supercomputingonline.com/article.php?sid=2269
- 5. IPv6. http://www.ipv6.org/
- 6. RFC 2373. IP Version 6 Addressing Architecture. (7/25/02) http://www.faqs.org/rfcs/rfc2373.html
- 7. Lammle, Todd. CCNA Cisco Certified Network Associate. 2nd Edition. Sybex Inc. 2000.
- 8. IP Version 6 (IPv6). (9/3/02). http://playground.sun.com/pub/ipng/html/ipng-implementations.html

References (2)

- 9. RFC 3194 The Host-Density Ratio for Address Assignment Efficiency: An update on the H ratio. (9/4/02) http://www.faqs.org/rfcs/rfc3194.html
- National Communications System (NCS) Technical Information Bulleting. (7/26/02) http://www.ncs.gov/n6/content/tibs/html/tib97_1/sec5_0.htm#sec5_2
- 11. An Atlas of Cyberspaces. (9/24/02) http://www.cybergeography.org/atlas/historical.html
- 12. The Open Encyclopedia Project. (9/24/02) http://open-site.org/Computers/Internet/History/
- 13. Sun Microsystems. http://wwws.sun.com/software/solaris/ipv6/
- 14. American Registry for Internet Numbers (ARIN.) http://www.arin.net/policy/ipv6_policy.html
- 15. Unix Review. (7/10/01)
 http://www.unixreview.com/documents/s=1362/urmb1/book1.htm
- 16. RFC 2374 An IPv6 Aggregatable Global Unicast Address Format. http://rfc.sunsite.dk/rfc/rfc2374.html
- 17. NTT Communications's IPv6 Activities. http://www.v6.ntt.net/globe/index-e.html

References (3)

- 18. RFC 2462 IPv6 Stateless Address Autoconfiguration. http://www.ietf.org/rfc/rfc2462.txt
- 19. Mobility Support in IPv6. http://www.ietf.org/internet-drafts/draft-ietf-mobileip-ipv6-18.txt
- 20. How to configure IPv6. http://asia.cnet.com/itmanager/tech/0,39006407,39047796-2,00.htm
- 21. IPv6 Operational Experience within the 6Bone. http://www.isoc.org/isoc/conferences/inet/00/cdproceedings/1e/1e_1.htm
- 22. High-Technology Medical Awards Announced. (10/14/98) http://www.nlm.nih.gov/news/press_releases/nextgen.html
- 23. Internet2/Partnerships.
 http://www.internet2.edu/html/partnerships.html
- eTForecasts. Internet Users Will Surpass 1 Billion in 2005. http://www.etforecasts.com/pr/pr201.htm

Acronyms

- 1 ARPA Advance Research Projects Agency
- 1 CIDR Classless Interdomain Routing
- 1 IANA Internet Assigned Numbers Authority
- 1 IETF Internet Engineering Task Force
- 1 IPng Internet Protocol Next Generation
- IPsec Internet Protocol Security
- 1 IPv4 Internet Protocol Version 4
- 1 IPv6 Internet Protocol Version 6
- 1 ISACA Information Systems Audit and Control Association
- 1 NAT Network Address Translation
- 1 NGI Next Generation Internet
- 1 NOC Network Operations Center
- 1 QoS Quality of Service
- 1 RFC Request For Comments
- 1 SRI Stanford Research Institute

To Learn More – Web Sites

- 1. IPv6 http://www.ipv6.org/
- 2. Testbed for deployment of IPv6 http://www.6bone.net/
- 3. 6REN IPv6 Research and Education Networks http://www.6ren.net/
- 4. IP version 6 (IPv6) http://playground.sun.com/pub/ipng/html/
- 5. IPv6 Forum http://www.ipv6forum.com/
- 6. IPv6 Enabled Applications http://www.ipv6.org/v6-apps.html

To Learn More - Articles/Papers

1. IPv6 White Paper.

http://www.cs-pv6.lancs.ac.uk/ipv6/documents/papers/BayNetworks/

- 2. Connecting IPv6 Routing Domains Over the IPv4 Internet http://www.cisco.com/warp/public/759/ipj_3-1/ipj_3-1_routing.html
- 3. IPv6 –what's in it, and what's in it for you. (4/24/2002) http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2862374,00.html
- 4. IPv6: Ready when you are. (4/24/2002)

http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2862388,00.html

5. Rocky road ahead for IPv6. (4/24/2002)

http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2862401,00.html

Related RFCs

- 1 <u>RFC 2373</u> IP version 6 Addressing Architecture http://www.faqs.org/rfcs/rfc2373.html
- 1 <u>RFC 2374</u> An IPv6 Aggregatable Global Unicast Address Format http://www.faqs.org/rfcs/rfc2374.html
- <u>RFC 2471</u> IPv6 Testing Address Allocation <u>http://www.faqs.org/rfcs/rfc2373.html</u>
- 1 <u>RFC 2640</u> Internet Protocol, Version 6 (IPv6) Specification http://www.faqs.org/rfcs/rfc2640.html

Thank You

Ivette Reategui Reategi@mail.nlm.nih.gov